Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements.

نویسندگان

  • Koen S Matthys
  • Jordi Alastruey
  • Joaquim Peiró
  • Ashraf W Khir
  • Patrick Segers
  • Pascal R Verdonck
  • Kim H Parker
  • Spencer J Sherwin
چکیده

A numerical model based on the nonlinear, one-dimensional (1-D) equations of pressure and flow wave propagation in conduit arteries is tested against a well-defined experimental 1:1 replica of the human arterial tree. The tree consists of 37 silicone branches representing the largest central systemic arteries in the human, including the aorta, carotid arteries and arteries that perfuse the upper and lower limbs and the main abdominal organs. The set-up is mounted horizontally and connected to a pulsatile pump delivering a periodic output similar to the aortic flow. Terminal branches end in simple resistance models, consisting of stiff capillary tubes leading to an overflow reservoir that reflects a constant venous pressure. The parameters required by the numerical algorithm are directly measured in the in vitro set-up and no data fitting is involved. Comparison of experimental and numerical pressure and flow waveforms shows the ability of the 1-D time-domain formulation to capture the main features of pulse wave propagation measured throughout the system test. As a consequence of the simple resistive boundary conditions used to reduce the uncertainty of the parameters involved in the simulation, the experimental set-up generates waveforms at terminal branches with additional non-physiological oscillations. The frequencies of these oscillations are well captured by the 1-D model, even though amplitudes are overestimated. Adding energy losses in bifurcations and including fluid inertia and compliance to the purely resistive terminal models does not reduce the underdamped effect, suggesting that wall visco-elasticity might play an important role in the experimental results. Nevertheless, average relative root-mean-square errors between simulations and experimental waveforms are smaller than 4% for pressure and 19% for the flow at all 70 locations studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulse-wave propagation in straight-geometry vessels for stiffness estimation: theory, simulations, phantoms and in vitro findings.

Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structur...

متن کامل

Simulation of Wave Propagation over Coastal Structures Using WCSPH Method

In this paper a space-averaged Navier–Stokes approach was deployed to simulate the wave propagation over coastal structures. The developed model is based on the smoothed particle hydrodynamic (SPH) method which is a pure Lagrangian approach and can handle large deformations of the free surface with high accuracy. In this study, the large eddy simulation (LES) turbulent model was coupled with th...

متن کامل

2D NUMERICAL MODELING OF WAVE TRANSFORMATION ON SOFT MUDDY BEDS

The present paper offers a numerical model which can be applied for the simulation of wave height distribution on a 2-D horizontal soft mud layer. The model is based on mild slope equations and it includes combined wave refraction, diffraction, reflection and breaking. The high energy dissipation of wave height due to the presence of fluid mud layer has also been simulated. Wave height attenuat...

متن کامل

Uncertainty quantification of inflow boundary condition and proximal arterial stiffness-coupled effect on pulse wave propagation in a vascular network.

This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is used to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics....

متن کامل

Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network

Reduced models of human arterial networks are an efficient approach to analyse quantitative macroscopic features of human arterial flows. The justification for such models typically arise due to the significantly long wavelength associated with the system in comparison to the lengths of arteries in the networks. Although these types of models have been employed extensively and many issues assoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 40 15  شماره 

صفحات  -

تاریخ انتشار 2007